

Problem set 2

EE 270 - Applied Quantum Mechanics

Due Wednesday Nov. 8, 2017 at 8.00 AM

Exercise I (10 points)

Show that the commutator of two Hermitian operators must be anti-Hermitian. An anti-Hermitian operator \hat{X} obeys $\hat{X}^{\dagger} = -\hat{X}$. (Hint : $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$ for any two operators \hat{A} , \hat{B} .)

Exercise II (10 points)

Let \hat{A} , \hat{B} , and \hat{C} be operators.

(a) Show that [A, BC] = [A, B]C + B[A, C].

(b) Let \hat{x} and \hat{p} be operators satisfying $[\hat{x}, \hat{p}] = i\hbar$ and let the Hamiltonian \hat{H} be $H = \frac{\hat{p}^2}{2m} + \frac{1}{2}k\hat{x}^2$. Use commutation relationships and part (a) to find $\frac{d < x>}{dt}, \frac{d }{dt}$, and $\frac{d < H>}{dt}$.

(c) Compare your answers with what you expect from the classical situation.

Exercise III (20 points)

Consider a particle confined by the potential V(x) = 0 for 0 < x < L and $V(x) = \infty$ elsewhere.

(a) Calculate $\langle x \rangle$, $\langle x^2 \rangle$, and Δx^2 .

(b) Show that as the state number $n \to \infty$ the average values approach those obtained from classical mechanics. Calculate the average particle momentum $\langle p_x \rangle$, $\langle p_x^2 \rangle$, and Δp_x^2 as a function of state *n*. How does $\Delta x \Delta p_x$ depend upon *n*?

Exercise IV (10 points)

Show that :

(a) The position operator \hat{x} acting on a wave function $\psi(x)$ is Hermitian.

(b) The operator d/dx acting on the wave function $\psi(x)$ is anti-Hermitian.

(c) The momentum operator $-i\hbar(d/dx)$ acting on the wave function $\psi(x)$ is Hermitian.

Exercise V (10 points)

A two-dimensional potential for a particle of mass m is of the form

$$V(x, y) = m\omega^2(x^2 + xy + y^2)$$

Write the potential as a 2×2 matrix and find the new coordinates *u* and *v* that diagonalize the matrix. Find the energy levels of the particle.

Exercise VI (10 points)

Using the fact that the Hamiltonian appearing in the Schrödinger equation

$$\frac{-i}{\hbar}\hat{H}\left|\psi(\mathbf{r},\mathbf{t})\right\rangle = \left|\frac{\partial}{\partial t}\psi(\mathbf{r},\mathbf{t})\right\rangle$$

is Hermitian, show that the time dependence of the average value of the observable A associated with the operator \hat{A} is

$$\frac{d}{dt} < A > = \frac{i}{\hbar} < [\hat{H}, \hat{A}] > + < \frac{\partial}{\partial t} \hat{A} >$$

Exercise VII (20 points)

For the one dimensional harmonic oscillator we have

$$\hat{a} = \left(\frac{m\omega}{2\hbar}\right)^{1/2} \left(\hat{x} + \frac{i\hat{p}_x}{m\omega}\right)$$

(a) Show that $\langle n|\hat{a}^{\dagger}|m\rangle = \langle m|\hat{a}|n\rangle^*$ and $\langle \hat{a}^{\dagger}n|\hat{a}^{\dagger}n\rangle = \langle n|\hat{a}\hat{a}^{\dagger}n\rangle$

(b) Is \hat{a}^{\dagger} a Hermitian operator?

(c) Is $\hat{N} = \hat{a}^{\dagger}\hat{a}$ a Hermitian operator?

Exercise VIII (10 points)

Consider a 2-D Hilbert space spanned by an orthonormal basis $|1\rangle$, $|2\rangle$. We define two kets $|\alpha\rangle = i |1\rangle - 2 |2\rangle$ and $|\beta\rangle = i |1\rangle + 2 |2\rangle$. (Don't worry about normalization in this problem.)

(a) Construct $\langle \alpha |$ and $\langle \beta |$ in terms of the dual basis $\langle 1 |$ and $\langle 2 |$.

(b) Find $\langle \alpha | \beta \rangle$ and $\langle \beta | \alpha \rangle$ and confirm that $\langle \beta | \alpha \rangle = \langle \alpha | \beta \rangle^*$

(c) Suppose the operator $\hat{A} = |\alpha\rangle\langle\beta|$. Find the matrix elements of \hat{A} and construct the matrix representation in the basis $|1\rangle$, $|2\rangle$. Is \hat{A} Hermitian?